

7Relaxação em meios porososRelaxação em meios porososRelaxação bulk - relaxação característica do fluido livre.Relaxação difusiva - relaxação associada a dinâmica molecular na presença de gradientes de campo.Relaxação superficial - relaxação induzida pela interação entre o fluido e a superficie.Os três mecanismos atuam de forma simultânea e independente:1 $\left(\frac{1}{T_2}\right) = \left(\frac{1}{T_2}\right)_{bulk} + \left(\frac{1}{T_2}\right)_{dif.} + \left(\frac{1}{T_2}\right)_{superf.}$ Exceto pelo mecanismo difusivo, exclusivo da relaxação transversal, os mesmos mecanismos contribuem para a relaxação longitudinal.

 $\left(\frac{1}{T_1}\right) = \left(\frac{1}{T_1}\right)_{bulk} + \left(\frac{1}{T_1}\right)_{superf.}$

(1) COATES, G.R.; XIAO, L.Z.; PRAMMER, M.G. NMR. Logging Principles and Applications. Houston: Halliburton Energy Services, 1999.

Relaxação em meios porosos

A relaxação relaxação superficial pode ser dividida em três regimes principais de acordo com o parâmetro de controle k:¹

15

16

$$k = \left(\frac{V}{S}\right)\frac{\rho_2}{D}$$

V é volume do poro; *S* é a área do poro; ρ_2 é a **relaxatividade superficial** (parâmetro associado à força da interação superficial).

difusão rápida: *k*<<1, as moléculas do fluido interagem diversas vezes com a parede antes de relaxar completamente.

difusão lenta: *k*>>10, as moléculas do fluido são incapazes de sondar todo o espaço poroso antes de relaxar completamente, devido ao tamanho do poro ou relaxatividade alta.

regime intermediário: 1< k <10.

(1) BROWNSTEIN, K.R. and TARR, C.E. Physical Review. A19, 2446-2453(1979.

Relaxação em meios porosos

No regime de **difusão rápida** (ou limitada pela superfície) a relaxação superficial do fluido ocupando um único poro pode ser aproximada por uma exponencial simples:

$$M_{xy}(t) = M(\theta) \exp\left(-\frac{t}{T_{2s}}\right)$$

M(0) é proporcional ao número de moléculas de fluido no poro, e a taxa de relaxação depende da razão superfície/volume:

$$T_{2s}^{-1} = \rho_2 \left(\frac{S}{V}\right)$$

Relaxação em meios porosos

Atenção! Existe um limite de tamanho de poro para a caracterização por RMN.

18

A distância percorrida pela molécula, em função do movimento Browniano:

$$\langle x^2 \rangle = 6Dt$$

 $\langle x^2 \rangle$ é o deslocamento quadrático médio.

Logo, considerando $D= 2,0x10^{-5}cm^2/s$, em um segundo, duração típica da medida de RMN, a molécula de água pode difundir 110μ m.

Relaxação em meios porosos

No regime de **difusão lenta** (ou limitado pela difusão), a relaxação do fluido varia de acordo com distância da parede, podendo ser descrita como uma combinação de modos de relaxação:

19

$$M_{XY}(t) = M(\theta) \sum_{k=0}^{\infty} f_k \exp\left(-\frac{t}{T_{2k}}\right)$$

 f_k é a amplitude das exponenciais.

O modo de relaxação de ordem zero predomina sobre os demais:

$$T_{2s\theta}^{-1} = \frac{\alpha D}{a^2}$$

 α é uma constante que depende da geometria do poro e *a* é a distância da parede. Logo, no regime de **difusão lenta**, a associação entre tempo de relaxação e **tamanho de poro** fica **comprometida**!!!

Performance Relaxação em meios porosos Os materiais porosos naturais (rochas, ossos, solos, etc.) são constituídos por um arranjo de poros de diferentes tamanhos. Logo, no regime de **difusão rápida**, o processo de relaxação dos fluido encerrados nos poros de um material natural pode ser aproximado por um série de exponenciais: $M_{xy}(t_i) = M(\theta) \sum_{j=1}^{m} c(T_{2j}) exp\left(-\frac{t_i}{T_{2j}}\right)$ m é o número de exponenciais; e $c(T_{2j})$ é o vetor das amplitudes.

Técnicas de processamento

Obtenção do espectro de relaxação $c(T_{2j})$ através da ILT:

O sinal de RMN pode ser descrito pela função multiexponencial:

$$f(t_i) = \sum_{j=1}^{m} c_j e^{-\frac{t_j}{T_{2_j}}} \quad i = 1, ..., n$$

31

Minimizar a norma:

$$||f - Ac||$$

Escrevendo na forma matricial:

$$\begin{pmatrix} f(t_1) \\ f(t_2) \\ \vdots \\ f(t_n) \end{pmatrix} - \begin{pmatrix} -\frac{t_1}{T_{2,1}} & -\frac{t_1}{T_{2,2}} & \dots & -\frac{t_1}{T_{2,m}} \\ -\frac{t_2}{T_{2,1}} & e^{-\frac{t_2}{T_{2,2}}} & \dots & e^{-\frac{t_2}{T_{2,m}}} \\ e^{-\frac{t_2}{T_{2,1}}} & e^{-\frac{t_2}{T_{2,2}}} & \dots & e^{-\frac{t_2}{T_{2,m}}} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{t_n}{T_{2,1}} & e^{-\frac{t_n}{T_{2,2}}} & \dots & e^{-\frac{t_n}{T_{2,m}}} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} = 0$$

Técnicas de processamento

Método dos mínimos quadrados:

$$||f-Ac||^2 = (f-Ac)^t (f-Ac) = (f^t - c^t A^t) (f-Ac)$$

$$= f^{t} f - f^{t} A c - c^{t} A^{t} f + c^{t} A^{t} A c = f^{t} f - 2c^{t} A^{t} f + c^{t} A^{t} A c$$

Diferenciando em relação a c:

$$A^t A c - A^t f = 0$$

A resolução do sistema sistema linear é um problema mal posto pois falha em atender uma das condições: (*i*) existência de solução; (*ii*) unicidade da solução e; (*iii*) <u>pouco dependente de erros experimentais.</u>

Técnicas de processamento

Utilização de um regularizador para estabilizar a solução. Resolução usando mínimos quadrados associando o regularizador de Tikhonov:

$$\|f - Ac\|^{2} + \lambda^{2} \|c\|^{2} = f^{t}f - 2c^{t}A^{t}f + c^{t}A^{t}Ac + \lambda^{2}c^{t}c$$

Diferenciando em relação com c:

$$A^{t}Ac + \lambda^{2} c - A^{t}f = 0$$

$$A^{t}A + (\lambda I)^{t}(\lambda I)c - A^{t}f = 0$$

$$\begin{pmatrix} A^{t} & \lambda I^{t} \end{pmatrix} \begin{pmatrix} A \\ \lambda I \end{pmatrix} c - (A^{t} & \lambda I^{t}) \begin{pmatrix} f \\ 0 \end{pmatrix} = 0$$
assumindo $A_{\lambda} = \begin{pmatrix} A \\ \lambda I \end{pmatrix}$

Resolver o sistema para diversos valores de λ :

$$A_{\lambda}^{t}A_{\lambda}c - A_{\lambda}^{t} \begin{pmatrix} f \\ 0 \end{pmatrix} = 0$$

34

n		/
	Contents	
METHODS IN THE PHYSICS OF POROUS MEDIA	Chapter 1 Digital Images and Computer Modeling	
	Chapter 2 Visualization of Flow Patterns in 2D Model Networks	4
Edwar by PO-ZEN WONG	Chapter 3 Probing Pore Structures by Sorption Isotherms and Mercury Pc	6
	Chapter 4 Conductivity Permeability and Electrokinetics	11
	Chapter 5 Acoustics and Ultrasonics	16
	Chapter 6 SmallAngle Scattering from Porous Materials	22
VOLUME 35 EXFERIMENTAL METHODS IN THE PHYSICAL SCIENCES	Chapter 7 Light Scattering and Other Optical Methods	26
Teolia Idees ROBET CLOTA THOMAS LICANDERO	Chapter 8 XRay Imaging	30
	Chapter 9 Nuclear Magnetic Resonance	33
ACADEMIC FRESS	Chapter 10 NMR Imaging of Fluids and Flow in Porous Media	38
	Chapter 11 Acoustical and Electrical Methods for the Study of Fluid Mixinc	42